

ALLOYS AND COMPOUNDS

Journal of Alloys and Compounds 230 (1995) L5-L7

Letter

Magnetic phase diagrams of the $\text{TbRh}_{2-x}\text{Pd}_x\text{Si}_2$ and $\text{TbRu}_{2-x}\text{Pd}_x\text{Si}_2$ systems

V. Ivanov^{a,b}, L. Vinokurova^a, T. Mydlarz^b, A. Szytuła^{c,*}

^aGeneral Physics Institute, Academy of Sciences, Vavilov Street 38, 117942 Moscow, Russian Federation

^bInternational Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-529 Wrocław, Poland

^cInstitute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland

Received 4 July 1995

Abstract

The a.c. susceptibility and high field magnetization of $\text{TbRh}_{2-x}\text{Pd}_x\text{Si}_2$ and $\text{TbRu}_{2-x}\text{Pd}_x\text{Si}_2$ compounds were investigated up to 140 kOe. The (T, x) magnetic phase diagrams were determined. For both systems, an increase in the Pd content causes a decrease in the Néel temperature and changes the magnetization curves.

Keywords: TbRh2-xPdxSi2 and TbRu2-xPdxSi2 systems; Magnetic phase diagram; Magnetic properties; Rare earth compounds

1. Introduction

Continuing our studies of the pseudo-ternary $RT_{2-x}T'_{x}Si_{2}$ compounds, we present results for $TbRh_{2-x}Pd_{x}Si_{2}$ and $TbRu_{2-x}Pd_{x}Si_{2}$. Ternary $RT_{2}Si_{2}$ compounds crystallize in the body-centered tetragonal $ThCr_{2}Si_{2}$ -type structure [1]. The $TbRh_{2}Si_{2}$ is a colinear antiferromagnet of the AF I type [2], whereas the $TbRu_{2}Si_{2}$ and $TbPd_{2}Si_{2}$ have modulated magnetic structures. The $TbRu_{2}Si_{2}$ has a sine-modulated structure with the wave vector $k = (0, k_{y}, 0)$ [3]. At low temperatures a squaring of the modulated structure with the propagation vector k = (0.602, 0, 0.148) [5].

In this work, results of a.c. susceptibility and high field magnetization measurements of $\text{TbRh}_{2-x}\text{Pd}_x\text{Si}_2$ and $\text{TbRu}_{2-x}\text{Pd}_x\text{Si}_2$ for x = 0, 0.5, 1.0, 1.5 and 2 systems are reported.

2. Experimental details and results

The experiments were carried out on polycrystalline samples which were prepared by arc-melting stoichiometric amounts of the constituent elements in an inert atmosphere of argon. The samples were subsequently annealed in a vacuum for 1 week at 800 °C.

Powder X-ray diffraction studies were performed using a Dron-3 X-ray diffractometer equipped with CuK_{α} radiation. The obtained data show that all samples are single-phase and of the tetragonal $ThCr_2Si_2$ type of crystal structure. Lattice parameters of all compounds were obtained by a least-squares fit to the experimental data. The obtained values are shown in Fig. 1. For the $TbRh_{2-x}Pd_xSi_2$ system, an increase in the *a* and decrease in the *c* constant are observed when the Pd content increases. For $TbRu_{2-x}Pd_xSi_2$, both *a* and *c* constants increase with increasing *x*.

The a.c. susceptibility was measured using a mutual inductance bridge. The temperature dependence of the a.c. magnetic susceptibility of both series is shown in Fig. 2. In the $\text{TbRh}_{2-x}\text{Pd}_x\text{Si}_2$ compounds with x = 0.5 and 2.0 one maximum is observed, whereas for x = 1.0 and 1.5 two anomalies appear. The $\text{TbRu}_{2-x}\text{Pd}_x\text{Si}_2$ has only one phase transition. A phase diagram as a function of x for both systems (see Fig. 3) was constructed. The magnetization of the samples was measured by means of a ballistic magnetometer in a Bitter-type magnet in magnetic fields up to 140 kOe. The magnetization curves measured at T = 4.2 K for the compounds with different x values are presented

^{*} Corresponding author.

^{0925-8388/95/\$09.50 © 1995} Elsevier Science S.A. All rights reserved SSDI 0925-8388(95)02038-1

Fig. 1. Concentration dependence of the lattice a and c constants of the ratio a/c and of the unit cell volume for $TbRh_{2-x}Pd_xSi_2$ and $TbRu_{2-x}Pd_xSi_2$.

in Fig. 4. For TbRh_2Si_2 , a one-step metamagnetic transition with the critical field of ~90 kOe is observed. An increase in the Pd content changes the character of the magnetization curves. The magnetization is almost a linear function of an external magnetic field with a small ferromagnetic component. For TbPd_2Si_2, a two-step metamagnetic transition with the critical fields of 25 kOe and 56 kOe is observed.

Fig. 3. Magnetic phase diagrams of $TbRh_{2-x}Pd_xSi_2$ and $TbRu_{2-x}Pd_xSi_2$.

The magnetization curve of a single-crystal TbRu₂Si₂ measured at 4.2 K has a two-step character with the critical fields of 22 kOe and 27 kOe [6]. For the polycrystalline sample, only a one-step transition with the $H_{\rm Cr} = 16$ kOe is observed [3]. A similar character of the magnetization curve is observed for the sample with x = 0.5. The magnetization curves for the samples with x = 1.0 and 1.5 are different. They are similar to the curve in the paramagnetic state. For all compounds the magnetic moments determined at T = 4.2 K and H = 140 kOe are smaller than the free Tb³⁺ ion value (9.0 $\mu_{\rm B}$).

3. Discussion

The magnetic phase diagrams of both $TbRh_{2-x}Pd_xSi_2$ and $TbRu_{2-x}Pd_xSi_2$ systems are simi-

Fig. 2. Temperature dependence of the a.c. susceptibilities for $\text{TbRh}_{2-x}\text{Pd}_x\text{Si}_2$ and $\text{TbRu}_{2-x}\text{Pd}_x\text{Si}_2$.

Fig. 4. High field magnetization curves at T = 4.2 K for (a) TbRh_{2-x}Pd_xSi₂ (1 - x = 0, 2 - x = 0.5, 3 - x = 0.75, 4 - x = 1, 5 - x = 1.5, 6 - x = 2) and (b) TbRu_{2-x}Pd_xSi₂ (1 - x = 0.5, 2 - x = 1, 3 - x = 1.5, 4 - x = 2).

lar to that for $\text{TbRh}_{2-x}\text{Ru}_x\text{Si}_2$ [7]. In the region 0 < x < 1 the Néel temperature decreases while for 1 < x < 2 the values of T_N are constant.

The results indicate that the magnetic properties of these systems depend on the 4d electron concentration. The substitution of rhodium and ruthenium by palladium causes a change in the magnetic interactions.

The external magnetic field changes the magnetic properties. For TbRh_2Si_2 and TbRu_2Si_2 compounds a two-step metamagnetic process occurs [6,8] which is typical for a number of RT_2X_2 compounds [9]. The observed change in the magnetization curves with an increasing Pd content indicates a complicated character of magnetic structures of these compounds.

Acknowledgement

This work has been partially supported by the State Committee for Scientific Research in Poland through a statutory fund of Jagellonian University.

References

- [1] Z. Ban and M. Sikirica, Acta Crystallogr., 18 (1965) 594.
- [2] M. Ślaski, J. Leciejewicz and A. Szytuła, J. Magn. Magn. Mater., 39 (1983) 268.
- [3] M. Ślaski, A. Szytuła, J. Leciejewicz and A. Zygmunt, J. Magn. Magn. Mater., 46 (1984) 114.
- [4] B. Chevalier, J. Etourneau, J. Hagenmuller, S. Quezel and J. Rossat-Mignod, J. Less-Common Met., 111 (1985) 161.
- [5] A. Szytuła, J. Leciejewicz and M. Ślaski, Solid State Commun., 58 (1986) 683.
- [6] T. Shigeoka, S. Kawano, T. Kishino, S. Mitsuyoshi, S. Mitani and N. Iwata, Jpn. Appl. Phys., 32 (1993) 336.
- [7] V. Ivanov, L. Vinokurova and A. Szytuła, J. Alloys Comp., 201 (1993) 109.
- [8] A. Szytuła, R.J. Radwański and F.R. de Boer, J. Magn. Magn. Mater., 104-107 (1992) 1237.
- [9] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, 1994.